Movement related slow cortical potentials in severely paralyzed chronic stroke patients
نویسندگان
چکیده
Movement-related slow cortical potentials (SCPs) are proposed as reliable and immediate indicators of cortical reorganization in motor learning. SCP amplitude and latency have been reported as markers for the brain's computational effort, attention and movement planning. SCPs have been used as an EEG signature of motor control and as a main feature in Brain-Machine-Interfaces (BMIs). Some reports suggest SCPs are modified following stroke. In this study, we investigated movement-related SCPs in severe chronic stroke patients with no residual paretic hand movements preceding and during paretic (when they try to move) and healthy hand movements. The aim was to identify SCP signatures related to cortex integrity and complete paralysis due to stroke in the chronic stage. Twenty severely impaired (no residual finger extension) chronic stoke patients, of whom ten presented subcortical and ten cortical and subcortical lesions, underwent EEG and EMG recordings during a cue triggered hand movement (open/close) paradigm. SCP onset appeared and peaked significantly earlier during paretic hand movements than during healthy hand movements. Amplitudes were significantly larger over the midline (Cz, Fz) for paretic hand movements while contralateral (C4, F4) and midline (Cz, Fz) amplitudes were significantly larger than ipsilateral activity for healthy hand movements. Dividing the participants into subcortical only and mixed lesioned patient groups, no significant differences observed in SCP amplitude and latency between groups. This suggests lesions in the thalamocortical loop as the main factor in SCP changes after stroke. Furthermore, we demonstrated how, after long-term complete paralysis, post-stroke intention to move a paralyzed hand resulted in longer and larger SCPs originating in the frontal areas. These results suggest SCP are a valuable feature that should be incorporated in the design of new neurofeedback strategies for motor neurorehabilitation.
منابع مشابه
Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.
Brain-computer interfaces (BCI) allow control of computers or external devices with regulation of brain activity alone. Invasive BCIs, almost exclusively investigated in animal models using implanted electrodes in brain tissue, and noninvasive BCIs using electrophysiological recordings in humans are described. Clinical applications were reserved with few exceptions for the noninvasive approach:...
متن کاملClosed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals
OBJECTIVE A neuroprosthesis using a brain-machine interface (BMI) is a promising therapeutic option for severely paralyzed patients, but the ability to control it may vary among individual patients and needs to be evaluated before any invasive procedure is undertaken. We have developed a neuroprosthetic hand that can be controlled by magnetoencephalographic (MEG) signals to noninvasively evalua...
متن کاملEEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century
People with severe neurological impairments face many challenges in sensorimotor functions and communication with the environment; therefore they have increased demand for advanced, adaptive and personalized rehabilitation. During the last several decades, numerous studies have developed brain-computer interfaces (BCIs) with the goals ranging from providing means of communication to functional ...
متن کاملC Brain – computer interface in par alysis
Current Opinion in Neurology 2008, 21:634–638 Purpose of review Communication with patients suffering from locked-in syndrome and other forms of paralysis is an unsolved challenge. Movement restoration for patients with chronic stroke or other brain damage also remains a therapeutic problem and available treatments do not offer significant improvements. This review considers recent research in ...
متن کاملA new hand assessment instrument for severely affected stroke patients.
BACKGROUND Standard assessment instruments cannot differentiate patients with minimal residual hand function after stroke. As a result, changes in motor recovery are difficult to document using currently-available tests. In a controlled study with chronic stroke patients without residual finger extension, a new hand function test has been developed. This instrument, called Broetz Hand Test (BzH...
متن کامل